描述
给出两个单词(start和end)和一个字典,找出所有从start到end的最短转换序列。
变换规则如下:
- 每次只能改变一个字母。
- 变换过程中的中间单词必须在字典中出现。
- 所有单词具有相同的长度。
所有单词都只包含小写字母。
题目确保存在合法的路径。
在线评测地址:
LintCode 领扣
样例1
输入:start = "a",end = "c",dict =["a","b","c"]
输出:[["a","c"]]
解释:
"a"->"c"
样例2
输入:start ="hit",end = "cog",dict =["hot","dot","dog","lot","log"]
输出:[["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
解释:
1."hit"->"hot"->"dot"->"dog"->"cog"
2."hit"->"hot"->"lot"->"log"->"cog"
从 end 到 start 做一次 BFS,并且把距离 end 的距离都保存在 distance 中。 然后在从 start 到 end 做一次 DFS,每走一步必须确保离 end 的 distance 越来越近。
与另外一个代码中提前建立 index 不同,这里是在寻找下一个变换单词的时候,再去获得对应的单词列表。一个单词最多有 L 个字符,每个字符有 25 种不同的变化(26个字母除掉这个位置上的字母),然后 check 一下在不在 dict 里就知道是不是 next word 了。
from collections import deque class Solution: """
@param: start: a string
@param: end: a string
@param: dict: a set of string
@return: a list of lists of string
""" def findLadders(self, start, end, dict): dict.add(start) dict.add(end) distance = {} self.bfs(end, distance, dict) results = [] self.dfs(start, end, distance, dict, [start], results) return results def bfs(self, start, distance, dict): distance[start] = 0 queue = deque([start]) while queue: word = queue.popleft() for next_word in self.get_next_words(word, dict): if next_word not in distance: distance[next_word] = distance[word] + 1 queue.append(next_word) def get_next_words(self, word, dict): words = [] for i in range(len(word)): for c in 'abcdefghijklmnopqrstuvwxyz': next_word = word[:i] + c + word[i + 1:] if next_word != word and next_word in dict: words.append(next_word) return words def dfs(self, curt, target, distance, dict, path, results): if curt == target: results.append(list(path)) return for word in self.get_next_words(curt, dict): if distance[word] != distance[curt] - 1: continue path.append(word) self.dfs(word, target, distance, dict, path, results) path.pop()
更多题解参考:九章算法